Bootstrap confidence intervals for principal response curves
نویسندگان
چکیده
The Principal Response Curve model is of use to analyze multivariate data resulting from experiments involving repeated sampling in time. The time-dependent treatment effects are represented by Principal Response Curves (PRCs), which are functional in nature. The sample PRCs can be estimated using a raw approach, or the newly proposed smooth approach. The generalizability of the sample PRCs can be judged using confidence bands. The quality of various bootstrap strategies to estimate such confidence bands for PRCs is evaluated. The best coverage was obtained with BCa intervals using a nonparametric bootstrap. The coverage appeared to be generally good, except for the case of exactly zero population PRCs for all conditions. Then, the behaviour is irregular, which is caused by the sign indeterminacy of the PRCs. The insights obtained into the optimal bootstrap strategy are useful to apply in the PRC model, and more generally for estimating confidence intervals in singular value decomposition based methods.
منابع مشابه
Bootstrap confidence intervals of CNpk for type‑II generalized log‑logistic distribution
This paper deals with construction of confidence intervals for process capability index using bootstrap method (proposed by Chen and Pearn in Qual Reliab Eng Int 13(6):355–360, 1997) by applying simulation technique. It is assumed that the quality characteristic follows type-II generalized log-logistic distribution introduced by Rosaiah et al. in Int J Agric Stat Sci 4(2):283–292, (2008). Discu...
متن کاملFunctional Analysis of Iranian Temperature and Precipitation by Using Functional Principal Components Analysis
Extended Abstract. When data are in the form of continuous functions, they may challenge classical methods of data analysis based on arguments in finite dimensional spaces, and therefore need theoretical justification. Infinite dimensionality of spaces that data belong to, leads to major statistical methodologies and new insights for analyzing them, which is called functional data analysis (FDA...
متن کاملStatistical Topology Using the Nonparametric Density Estimation and Bootstrap Algorithm
This paper presents approximate confidence intervals for each function of parameters in a Banach space based on a bootstrap algorithm. We apply kernel density approach to estimate the persistence landscape. In addition, we evaluate the quality distribution function estimator of random variables using integrated mean square error (IMSE). The results of simulation studies show a significant impro...
متن کاملStability of nonlinear principal components analysis: an empirical study using the balanced bootstrap.
Principal components analysis (PCA) is used to explore the structure of data sets containing linearly related numeric variables. Alternatively, nonlinear PCA can handle possibly nonlinearly related numeric as well as nonnumeric variables. For linear PCA, the stability of its solution can be established under the assumption of multivariate normality. For nonlinear PCA, however, standard options ...
متن کاملBootstrapping Principal Component Regression Models
Bootstrap methods can be used as an alternative for cross-validation in regression procedures such as principal component regression (PCR). Several bootstrap methods for the estimation of prediction errors and confidence intervals are presented. It is shown that bootstrap error estimates are consistent with cross-validation estimates but exhibit less variability. This makes it easier to select ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computational Statistics & Data Analysis
دوره 52 شماره
صفحات -
تاریخ انتشار 2008